6686

新闻资讯 分类
6686体育app苹果下载:为什么碱土金属碳酸盐,碱金属碳酸盐的热稳定性同族发布日期:2023-11-21 浏览次数:

最不稳定的。碳酸盐的热稳定性一般来说,呈现以下变化顺序:碱金属的碳酸盐>碱土金属碳酸盐>副族元素和过渡元素的碳酸盐。Li+、Be2+的极化力在碱金属和碱土金属中是最强的,因此Li2CO3和BeCO3在其各自同族元素的碳酸盐中都是最不稳定的。热稳定性,英文表示为热稳定性。是指材料的耐热性,物体在温度影响下的变形能力,变形越小,稳定性越高。

碱土金属碳酸盐的热稳定性规律可以用离子极化的观点解释。一般认为,含氧酸盐热分解的本质是金属离子争夺含氧酸根中的氧离子。

因此金属离子的半径越小,正电荷越高,极化作用越强,夺取含氧酸氧离子的能力越强,含氧酸盐的热分解温度越低。从Be-Ba,碱土金属离子的半径递增,极化作用递减,故热分解温度依次升高。

不同碳酸盐的热稳定性差异很大。其中碱金属和碱土金属碳酸盐的热稳定性较高,必须灼烧至高温才分解;而有些金属的碳酸盐的热稳性较低,加热到100℃左右就分解,如碳酸铍等;有的碳酸盐在常温下就可以分解,如碳酸汞。

酸式碳酸盐的热稳定性比相同金属的碳酸盐低得多。例如碳酸钠,要851℃以上才开始分解,而碳酸氢钠在270℃左右就明显分解。

扩展资料:

碳酸盐的稳定性是有规律的:

碱金属的碳酸盐,从碳酸锂到碳酸铯稳定性逐渐增强;碱土金属的碳酸盐,从碳酸铍到碳酸钡稳定性也逐渐增强;同周期的碱金属碳酸盐比碱土金属碳酸盐稳定。

碳酸盐的热稳定性规律可简记为:

①易溶于水的碳酸盐受热不分解。

②难溶于水的碳酸盐以及碳酸氢盐,碱式碳酸盐受热都易分解(包括铵盐)。

③热稳定性顺序为:碱金属碳酸盐>其它金属碳酸盐>碳酸氢盐>铵盐>碳酸。

碳酸氢盐的稳定性也一样:

碱金属碳酸氢盐,从碳酸氢锂到碳酸氢铯,稳定性逐渐增强;碱土金属的碳酸氢盐,也一样,从上到下,由不稳定到稳定,且同周期的碱金属碳酸氢盐比碱土金属的碳酸氢盐稳定。

同一元素的碳酸盐比酸式盐稳定。

参考资料来源:百度百科-离子极化

参考资料来源:百度百科-碳酸盐

参考资料来源:百度百科-碱土金属

您好,我就为大家解答关于碱土金属碳酸盐热稳定性的变化规律,碱土金属相信很多小伙伴还不知道,现在让我们一起来看看吧!1、碱土金属(alka...

您好,我就为大家解答关于碱土金属碳酸盐热稳定性的变化规律,碱土金属相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、碱土金属(alkaline-earth metals)周期系ⅡA族元素,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)六种金属元素。

2、因为这些金属的氧化物既是熔点很高的,它们溶于水又显较强的碱性,历史上曾经把难熔的氧化物称为土性的,所以这6种金属被称为碱土金属。

3、它们都是灰色至银白色金属,容易同空气中的氧气和水蒸气作用,在表面形成氧化物和碳酸盐,失去光泽。

4、碱土金属的硬度略大于碱金属,钙、锶、钡、镭仍可用小刀切割,其熔点和密度也都大于碱金属,但仍属于轻金属。

5、碱土金属的导电性和导热性能较好。

6、它们的化学性质活泼,在空气中加热时,发生燃烧,产生光耀夺目的火光,形成氧化物。

7、与水作用时,放出氢气,生成氢氧化物,碱性比碱金属的氢氧化物弱,但钙、锶、钡、镭的氢氧化物仍属强碱。

8、碱土金属最外电子层上有两个价电子,氧化态为+2,所生成的盐多半很稳定,遇热不易分解,在室温下也不发生水解反应。

9、碱土金属的离子为无色的,其盐类大多是白色固体,和碱金属的盐不同,碱土金属的盐类(如硫酸盐、碳酸盐等)溶解度都比较小。

10、在自然界中,碱土金属都以化合物的形式存在,可用焰色反应鉴定。

11、由于它们的性质活泼,只能用电解方法制取。

是大学无机化学吧,我想你要学会从规律的角度理解:

1、熔点降低-----都是RO结构,属于离子晶体,熔点即阴阳离子分开,所以与离子键有关,O^2-相同,离子键与R^2+有关,带的正电荷相等,但是半径增大,即阴阳离子间距增大,离子键作用减弱,即熔沸点降低

2、氧化物热稳定性是降低

碳酸盐的热稳定性从铍到钡是依次递增

--------这两个都是稳定性,所以从阴阳离子是否匹配的角度理解,你学过软硬酸碱理论吗,若学过,应该知道“软软结合、硬硬结合的较稳定;软硬结合的不稳定”,而软、硬与离子的大小有关

R^2+半径增大,所以,越来越软

O^2-半径小,属于硬

CO3^2-是复杂离子,半径大,属于软

所以,RO中,Be2+最硬,BeO最稳定

RCO3中,Be2+最硬,则BeCO3最不稳定

若你没有学过软硬酸碱理论,就从另一个角度理解:

Be与Al是对角线规则,很相似,所以,没有Al2(CO3)3,也就没有BeCO3,即BeCO3很不稳定

而存在CaCO3、BaCO3,所以,RCO3稳定性增强

而RCO3越来越稳定,即分解越来越难,则分解生成的RO越来越不稳定

MgCO3加热分解

CaCO3高温煅烧分解

说明,RCO3的分解温度越来越高,即稳定性增强

第十三讲镧系和锕系元素

一、镧系元素的电子层结构

镧系元素包括从原子序数57的La至原子序数71的镥共15种元素,用Ln表示。钇的化学性质与镧系元素相似,在矿物中共生,通常把钇和镧系元素合称为稀土元素,用RE表示。也有认为稀土元素还包括钪。按照稀土元素性质的差异,又将La系前7种元素(La-Eu)称为重稀土(钇组稀土)。镧系元素价电子构型:(n-2)f1~14(n-1)d0~2ns2.

二、镧系收缩

镧系元素的原子半径和离子半径随原子序数增大总趋势呈现逐渐减小的现象称为镧系收缩。镧系元素中,原子序数每增加1,4f轨道也增加1个电子,由于增加的4f电子不能完全屏蔽随之增加的核电荷,因而虽原子序数增加,有效核电荷递增,核对最外层电子吸引增强,致使原子半径和离子半径逐渐减小。

镧系收缩是周期系中一个重要的现象,它使周期表中镧系后面的元素的原子半径和离子半径分别与第五周期同族元素的原子半径和离子半径极为接近,造成Zr和Hf,Nb和Ta,Mo和W性质相似,难以分离。此外,它还造成Y3+半径(88pm)落在Eu3+(88.1pm)附近,因而Y在自然界中常与镧系元素共生,成为稀土元素的一员。

三、镧系元素的氧化态

主要呈现+3,但Ce、Pr、Tb、Dy能呈现+4氧化态;Sm、Eu、Tm、Yb还能呈现+2氧化态;这与它们离子电子构型保持或接近全空,半满或全满有关。如4价的Ce4+(4f0)、Pr4+(4f1)、Tb4+(4f7)、Dy4+(4f8)和2价的Sm2+(4f6)、Eu2+(4f7)、Tm2+(4f13)、Yb2+(4f14)。以上氧化态出现还与镧系元素的电离能和离子水合能变化起伏有关。

四、镧系元素离子和化合物的颜色

不少镧系元素离子具有颜色,由于f-f跃迁引起的。Ln3+呈现颜色通常与未成对电子数有关,即Ln3+具有fn和f14-n个电子,因未成对电子数相同,所以呈现相同或相近颜色。其中La3+(f0)、Lu3+(f14)为无色,因不能实现f-f跃迁;Ce3+(f1)、Eu3+(f6)、Gd3+(f7)、Tb3+(f8)等离子虽可实现f-f跃迁,但吸收峰落在紫外区,Yb3+(f13)吸收峰落在红外区,故也为无色;Ce4+(f0)呈现橙红色是由于电荷迁移引起的。

五、镧系元素重要化合物

1、Ln(OH)3

Ln2O3与水反应或Ln3+溶液中加入NaOH或氨水都可以生成Ln(OH)3。它的碱性接近于碱土金属氢氧化物,但溶解度比后者小得多,由于离子半径从La3+到Lu3+逐渐减小,所以从La(OH)3到Lu(OH)3碱性渐弱,分解温度也逐渐降低。Ln(OH)3受热先变成LnO(OH),在更高的温度下才变成Ln2O3。6686体育app苹果下载

2、LnX3

LnF3不溶于水,也难溶于酸。而LnCl3易溶于水,在水溶液中析出的LnCl3晶体都含有结晶水,加热水合物不能制得无水盐,而是水解为氯氧化物,如:

LaCl3�6�17H2O=LaOCl+2HCl+6H2O

为避免水解, 1减压下脱水;2加热脱水时通入HCl(g)或加入NH4Cl(s)。

3、Ln2(SO4)3和Ln(NO3)3

易溶于水,这些盐类水合物受热时,一般先变成盐,随后变成碱式盐,最后变成氧化物,如:

La2(SO4)3�6�18H2O=La2(SO4)3+8H2O

La2(SO4)3=La2O2SO4+2SO2+O2

La2O2SO4=La2O3+SO2+1/2O2↑

硫酸盐溶解度从La2(SO4)3到Lu2(SO4)3逐渐增大,这与碱土金属硫酸盐的溶解度随离子半径变化的规律相一致。

4、Ln2(C2O4)3

不溶于水,也难溶于稀酸,利用此性质可将镧系元素离子与其他金属离子分离开来,因一般草酸盐都易溶于稀酸。重稀土元素草酸盐在草酸钠或草酸铵中的溶解度比轻稀土元素草酸盐大得多,这一性质被用来分离轻、重稀土元素。镧系元素草酸盐受热一般先变成碳酸盐,随后才变成氧化物。

5、Ce4+和Eu2+的化合物

常见Ce4+的可溶盐类是Ce(NO3)4和Ce(SO4)2。在Ce4+盐溶液中加碱即生成黄色的CeO2�6�1nH2O沉淀。CeO2.nH2O遇HNO3或HClO4生成相应的Ce4+盐,但遇HCl则发生如下氧化还原反应:

2Ce4++2HCl→2Ce3++Cl2↑+2H+

Ce4+极易水解,当溶液pH在0.7~1时,生成CeO2�6�1nH2O沉淀析出,而其他Ln3+在pH6~8才析出,此性质可在混合稀土中分离Ce4+。Sm、Eu、Yb虽都可形成+2价离子,但只有Eu2+在水溶液中能稳定存在,Sm2+、Yb2+很快被H2O氧化。Eu2+的半径与Sr2+、Ba2+相近,因此它们表现出一定的相似性,如EuSO4和SrSO4、BaSO4一样,都是难溶盐。

习题1:在混合镧系元素离子溶液中,如何分离出铈和铕?

六、锕系元素

从原子序数89的锕(Ac)至原子序数103的铹(Lr),共15种元素,用An表示。价电子构型有两种类型:5fn7s2和5fn-16d17s2,但锕系的5f和6d能量差比镧系4f和5d能量差更小,锕系前半部分元素的原子有保持d电子倾向,后半部分元素原子电子构型与镧系元素相似,下面就两系元素性质作一比较:

相似处:

1、镧系特征氧化态为+3,锕系随原子序数增加+3价稳定

2、锕系许多化合物与镧系化合物类质同晶6686体育

3、与镧系收缩相似,锕系元素离子半径也出现“锕系收缩”

4、锕系元素也能发生f-f跃迁而显色

不同处:

1、锕系氧化态呈现多样性,前面一部分锕系元素最稳定氧化态有+4、+5、+6,而这些元素多种氧化态可同时稳定存在,如Pu在水溶液中+3、+4、+5、+6都可存在。

2、锕系元素离子形成配合物时有较多的共价性,因而形成配合物的能力比镧系元素强。

七、钍和铀的重要化合物

钍和铀是锕系元素中最常见,应用最广的两种元素,钍最稳定的氧化态为+4,铀最稳定的氧化态为+6。

习题2:写出下列变化的反应方程式。

习题3:过渡元素的金属性通常自上而下递减,为什么ⅢB族却自上而下递增?

习题4:为什么镧系元素化学性质很相似,而锕系元素彼此间化学性质差别较大?

习题5:为什么金属离子形成配合物能力大小顺序为d区元素>f区元素>s区元素?又为何f区元素中锕系元素>镧系元素?

习题6:如何分离轻稀土元素和重稀土元素?

习题7:简述用碱法从独居石中制备稀土氯化物的主要过程。

练习题

1.何谓稀土金属?许多稀土矿物通常缺少铕,而在含钙的矿物中常发现高浓度的铕的化合物,试解释之.

2. Eu和Yb在酸性介质中都具有还原性,为什么它们比各自相邻的两种金属(Sm.Gd);(Tm.Lu)的还原性要弱一点?

3.为什么Ce(Ⅳ)在HClO4. H2SO4和HNO3等不同的介质中,其φ0 Ce(Ⅳ)/ Ce(Ⅲ)会有不同的值.

4.写出二氧化铈溶于盐酸和硫酸的化学方程式.

5.在镧系元素中,+3氧化态是最稳定也是最常见的.试解释之.

6.如何制备无水LnCl3?

7.为什么锕系元素中前一半元素易显示高氧化态,而后一半易显示低氧化态?

8.低价态的过渡金属可与一氧化碳生成多种羰基配合物,你认为镧系元素的羰基配合物是稳定的吗?试说明理由.

9.什么是镧系收缩?对第六周期的元素性质有何影响?

10.在稀土元素的分离中,草酸盐起着重要作用,为什么?

11.为什么镧系元素形成的配位化合物多半是离子型的?试论镧系配合物稳定性的规律及其原因.

12.从原子电子层结构来比较镧系元素和锕系元素异同点

13.在铀的同位素中铀-235是重要核燃料,但天然铀矿中234U. 235U. 238U相对丰度为0.006%、0.71%、99.28%,如何通过一系列工艺过程把它富集起来?

随着原子序数增加,M+离子半径增大,反极化作用减弱(简单说就是离子的正电场弱了),吸引O 2-的能力减弱;而碳酸盐的分解可看作CO3 2-中的一个氧带着电子离去(即O 2-离去),和M+结合,而留下的CO2释放出去。所以原子序数增加,热稳定性增加。

氢氧化物和过氧化物其实类似。

碳酸钙热分解温度898摄氏度,硫酸钙热分解温度在1200摄氏度以上,完全分解温度在1350~1400摄氏度。

原因:

碳酸钙热分解:Ca++ CO3--= CaO+ CO2

硫酸钙热分解:

2 Ca++ SO4--= 2 CaO+ 2 SO2+ O2

碳酸根为平面结构,两个负电荷分布于三个氧原子上,C-O距离小,极化性低,所以稳定性不如硫酸根。硫酸根为正四面体结构S-O间距大,极化性高,两个负电荷分布于四个氧原子上,电荷排斥小,更稳定。


地图